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ABSTRACT

Demolicious is a general purpose SIMT inspired computer. It is specialized to
handle parallel rendering of computer graphics. The performance of the system
scales linearly with the amount of cores.

In addition, this system is the first of its kind in this project with an HDMI
output. Computer generated graphics was chosen as a showcase application,
and was successfully demonstrated on an HDMI enabled screen.

It features a multi-core architecture, and is designed to maximize processor core
utilization by hiding memory latency.

The system has been implemented on a PCB, using a backup oriented design
philosophy, and has passed testing and verification.
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CHAPTER 1

COMPUTER DESIGN PROJECT

This report presents the TDT4295 Computer Design Project at NTNU for the
fall semester of 2014.

The course is held every fall, and consists of a single task in which a group of
students make a working computer from scratch. This report’s group was made
out of 9 students from the Computer Science department. Gunnar Tufte and
Yaman Umuroglu served as advisors for the group throughout the semester and
assisted in administrative tasks.

1.1 ASSIGNMENT

The Computer Design Project’s primary tasks included making a custom printed
circuitboard (PCB) and implementing a custom processor architecture on an
FPGA (Field-Programmable Gate Array). Together with a microcontroller
(MCU) and a choice of I/O components, these were to form a complete and
working system. The project is evaluated based on this report and an oral
presentation of the work, as well as a prototype demonstration.

The specific assignment for this year was to create a processor inspired by GPU
architectures. Core requirements included having multiple processor cores and
a graphical display output.
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1.1.1 ORIGINAL ASSIGNMENT TEXT

1.1.1.1 CONSTRUCT A GRAPHICS PROCESSING UNIT (GPU)
INSPIRED PROCESSOR

GPUs play a large role in graphical applications as well as high
performance computing. They are typically constructed around the
SIMD (single instruction multiple data) paradigm and include spe-
cial hardware for accelerating graphics-related operation. The idea
is to make a GPU-inspired processor architecture that exploits the
possibility of parallel computation on a single chip. The GPU must
be a multi-core system.

1.1.1.2 ADDITIONAL REQUIREMENTS

Your processor will be implemented on an FPGA, and you are free
to choose how to realize your computer architecture. Studying the
architecture of general multi-core processors and parallel machines
options can be a good starting point.

Energy efficiency should be a primary consideration in all phases of
the project, from early design decisions to how software is written.

The task should also include a suitable application that can produce
a graphical output on a display to demonstrate the processor.

The unit must utilize a Silicon Labs EFM32 series microcontroller
(to act as an I/O processor) and a Xilinx FPGA (to implement your
architecture on). The budget is 10 000 NOK, which must cover
components and PCB production. The unit design must adhere to
the limits set by the course staff at any given time.
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1.2 A PARALLEL PROCESSING ACCELERATOR

The group decided to make the custom GPU inspired processor as an acceler-
ator processor for parallelizable computations. This means that it would not
be designed to run entire programs on its own, but would instead be tasked
with particular parallelizable parts of a program. Its purpose would primar-
ily be to run graphics related operations. However, it would be designed to
be programmable with general arithmetic and logic operations, and not have
specialized hardware units for performing graphics operations. The group was
determined to also send graphics output directly from the accelerator to screen,
as is common for a GPU.

The accelerator design needed be implemented on an FPGA. The FPGA was
to be mounted on a PCB together with a microcontroller, memory, and HDMI
port, and form a graphical computer system similar to how modern PCs are
organized.

1.3 STRUCTURE OF THE REPORT

The accelerator processor will fill the role of a modern GPU in the system
presented by this report. Therefore, it will be referred to in this report as the
GPU.

Having introduced the problem, the report will continue by giving a short in-
troduction to what a GPU is and their design. It will present concepts and
challenges in graphical computations and GPU design. These topics help to
appreciate the need for a GPU in modern computers, and to understand the
trade-offs and optimizations involved in its design.

The system created in this project, and its purpose, will be introduced in light
of modern GPU concepts. In the solution part, a detailed explanation of the
system will be given by roughly following the path of an executing program,
going from high to low levels of abstraction.

The physical product produced in this project, and the test and verification
methods involved in making it work, will also be presented. The results chapter
will go through which parts of the system worked and which did not, and will
look at measurements of its performance. Lastly, the discussion chapter will
comment on some of the difficulties with the completed system, and on topics
such as possible further work.

Note that the reader of this report is expected to have a basic understanding of
logic design, computer components, and programming.
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MODERN GRAPHICS
PROCESSING UNITS

2.1 WHAT 1S A GPU

Modern GPUs are, in a way, an evolution of former Video Graphics Array
(VGA) controllers [2]. A VGA controller of the early 1990s served as a memory
controller and display generator that wrote framebuffer values to a display. As
technology advanced, it received hardware to perform specific graphics related
functions. This eventually evolved into a processor, with its own memory, that
incorporated a full set of graphical functions.

A GPU’s primary purpose has traditionally been to offload graphical calcula-
tions from the CPU and render images to a screen. Graphical functions are ac-
cessed through APIs like DirectX and OpenGL. Today, GPUs also have general
computing capabilities and may serve as co-processors for the CPU in addition
to handling their graphical duties. Non-graphics applications for a GPU include
image processing, video encoding, and many scientific computing problems and
other large, highly regular calculations.

2.2 THE GPU MARKET

In general, at least one GPU is present in every PC these days, and the market
for PCs has been relatively stable for many years [5]. These GPUs can take
the form of discrete chips or be integrated with the CPU. Intel, AMD, and
NVIDIA are the big actors in the PC GPU market [14]. Intel is largest overall
but only makes GPUs integrated with their CPUs. AMD and NVIDIA share
the discrete GPU market [13]. One of NVIDIA’s GPU architectures will be
used as an example later. A big market for the more powerful discrete GPUs is
the computer gaming industry. This market has contributed a great deal to the
rapid progression of graphics technologies. With the advent of general purpose
GPUs, scientific computing has also gained an interest in powerful GPUs.
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In the past 6 years, the booming market for mobile smart devices has introduced
a new arena for GPUs. Mobile devices are currently outselling workstations, and
every new mobile device sold today is shipped with a small-format GPU. These
GPUs are generally integrated in the device’s system-on-a-chip (SoC), and have
slightly different design considerations than traditional workstation GPUs. As
for everything else that runs on batteries, power consumption is a primary
concern in this format. Traditionally, this is a concern that GPU design has
not needed to prioritize. The mobile GPU format has opened up for other GPU
design companies than the three mentioned above. The three dominant GPU
design companies in the SoC market are Qualcomm, ARM, and Imagination
Technologies [15].

2.3 AN ENORMOUS TASK

Producing computer graphics is a highly processing intensive task. Consumers
expect their computers to display videos and games in high resolutions and
at high framerates. To color one pixel accurately in a 3D environment, the
processor typically needs to calculate vectors in 3D space, interpolate texture
data, adjust for light intensity, and more. All of these tasks require several
demanding floating point operations.

A CPU is optimized for serial programs, and will compute a picture frame in
such a fashion. The problem is that, even with the processing power of 4 GHz,
it is not able to handle the amount of calculations well enough for modern
graphical demands. Fortunately, pixels can often be computed independently
of each other. A CPU fails to take advantage of this.

2.4 TAKING ADVANTAGE OF PARALLELISM

For a CPU, latency is of primary concern because the next instruction often
depends on the result of the previous one. Therefore, the CPU needs to com-
plete each instruction as quickly as possible. This makes the CPU very good
at problems with a low level of parallelism, which after all characterizes most
programs. Finishing an instruction as quickly as possible is less of a concern
when problems are more parallel in nature. A GPU therefore optimizes for
throughput instead of latency. It gains throughput by making its architecture
highly parallel in all respects.

The fast single-threaded cores in CPUs are replaced with a large quantity of
smaller, slower cores. A GPU gains throughput by spending resources on ex-
ecution units instead of more cache, prediction logic, or dynamic reordering
logic to make one execution unit very effective. It also exploits parallelism with
its deep pipelines, executing many instructions concurrently within each core.
These architectural decisions cause each individual thread to require more wait
cycles to wait for memory access or pipeline hazards. Fortunately, a GPU is not
concerned about each individual thread’s tardiness, and instead fills these wait
cycles by interleaving many threads at once in each core. Filling every cycle
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and every pipeline stage with useful work is, of course, essential in optimizing
throughput.

2.5 AT THE MERCY OF MEMORY

A GPU can achieve a very high throughput because of its massive amount of
parallelism. But with great computing power comes great memory demand.
Keeping all the computational units in a GPU supplied with enough data is a
difficult challenge. Using NVIDIA’s top-end GPU in 2006, GeForce 8800, as an
example, it can process 32 pixels per clock at 600 MHz [2]. A pixel will usually
be 4 bytes in size. Calculating its value will typically require a read and write
of color and depth, and a few texture element reads. So, on average, there may
be a demand of 7 memory accesses of 4 bytes each per pixel. To sustain 32
pixel values per clock, this requires up to 896 bytes per clock, or 537 GB/s, in
memory transfers.

Many techniques are used by the memory system to meet such demanding re-
quirements. First of all, the memory system consists of many different types of
memories that are optimized for different access patterns. Some data must be
globally available to all threads, others are local to one or a handful of threads.
Some data is read only, some data is accessed with a high spatial locality in
3D space, and so on. Tailoring the memory system to suit important and
commonly used access patterns is key to high performance. Some examples of
memory types that NVIDIA use in their GPU architectures are texture memory,
constant memory, local memory, and shared memory.

The different types of memories are usually organized into several separate
banks, often with their own memory controller, so that more requests can be
handled at a time. Interleaving consecutive virtual addresses over different
physical memory banks will assist in spreading requests evenly across the set
of banks. All memories typically have multiple levels of cache associated with
them as well. Other techniques to improve memory bandwidth include data
compression to reduce the amount of bits to transfer, and bundling memory
accesses into sets that the memory system handle well. Bundling adds latency
to memory requests. But, as mentioned earlier, this is not an issue as the GPU
has plenty of other work to do while a particular thread waits.

2.6 SHORTCOMINGS OF A GPU

A GPU obviously does its parallel calculations effectively, but it comes at a cost.
It gains throughput over a CPU in part by sacrificing low latency in individual
instructions. As we have seen, this happens as a result of deep pipelines and
delayed memory requests, among other things. Such architectural features re-
duce the performance of serial programs, especially ones with a lot of branching.
Branching instructions on a deeply pipelined processor is heavily punished by
control hazards.
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Since most programs are not particularly parallelizable and commonly contain
branching, a GPU is insufficient for running an average program by today’s
standards. Computer users today are accustomed to the performance provided
by the cooperation of a CPU and a GPU, a so-called heterogeneous computer
system. This is so essential that no computer, or even mobile unit, with a
graphical display is produced today without the combination of both.
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NVIDIA’'S FERMI
ARCHITECTURE AND CUDA
PROGRAMMING MODEL

To explore some concepts of modern GPU architectures in detail, this chapter
will take a look at an example from NVIDIA. The programming model used
by NVIDIA for its modern GPUs, called CUDA, will be be examined. Then,
NVIDIA’s first architecture to use this programming model, the Fermi archi-
tecture, will be used as the example for illustrating GPU design concepts. The
system presented in this report is heavily inspired by NVIDIA, and the following
concepts are relevant for both its programming model and its architecture.

3.1 THE FERMI ARCHITECTURE

In 2006 NVIDIA released their first GPUs with a so called unified shader ar-
chitecture. Before this, GPUs had separate, dedicated hardware for all common
graphics operations. Beginning with the Fermi architecture, the majority of
operations are executed on the same hardware. The hardware is able to per-
form general operations. This significant difference compared to earlier GPU
microarchitectures has enabled other calculations on a GPU than graphics pro-

cessing. This ability been given the term General-Purpose GPU computing, or
GPGPU.

3.2 CUDA PROGRAMMING MODEL

To expose the computing powers of the graphics card for general applications,
there was a need for a new application programming interface (API) that could
be used to run code on the GPUs. It was possible to do non-graphical calcula-
tions on GPUs previously, but it required redefining any problem as a graphics
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problem. This was highly impractical. With the Fermi architecture, NVIDIA
released a framework for running code on their GPUs called CUDA.

CUDA is an extension to the programming language C, and it lets the pro-
grammer write functions for executing on the GPU. Such a function is called
a kernel. An example will be used to illustrate how a kernel executes on the
Fermi architecture.

Let’s say you want to fill a frame buffer, an area of memory, with the color
green. In a sequential programming model, you would typically write a loop
that would fill the memory locations with the value for green one by one. See
Listing 3.1.

int green = 0x00FF00;
for (int i = 0; 1 < nr_of_pixels; i++){
framebuffer[i] = green;

}

Listing 3.1: A sequential program filling the screen with green

For a CUDA kernel, on the other hand, same program would be written as if
filling only a single pixel with green. The kernel would then be executed by
one thread for every pixel on the screen. Each thread would receive a unique id
number corresponding to the i’ value from the serial example. Below, in Listing
3.2, is an example CUDA kernel that fills a single memory location, or pixel,
with green.

__global__ void fill_screen (intx framebuffer) {
/% Calculate global id of this thread =*/
int global_id = blockIdx.x * blockDim.x + threadIdx.x;
int green = 0x00FFO00;
framebuffer[global_id] = green;

Listing 3.2: A CUDA kernel filling a single pixel with green

The CPU will need to load a kernel into the GPU at run time before calling
it. When calling a kernel, the CPU specifies how many threads to run. Man-
aging memory, uploading kernels, and calling kernels on the GPU is done using
CUDA specific syntax. Listing 3.3 shows example CUDA code for calling the
"fill screen" kernel.

intx frame_buffer device = cudaMalloc (data_size); // allocate memory at
GPU
fill_screen<<<1080,1920>>> (frame_buffer_device); // call kernel

Listing 3.3: Starting the CUDA kernel with one thread per pixel on a 1920x1080
screen

Running a separate thread for each small task, like in CUDA, has another more
general term, SIMT. SIMT is short for Single Instruction Multiple Threads. It
is a common programming paradigm for modern GPUs because it a very flexible
way of writing parallel programs. Its programs are easily portable and scalable

10
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because they ignore the underlying architecture of the machine.

3.3 STREAMING MULTIPROCESSORS

Streaming
Multiprocessor (SM)

Figure 3.3.1: Streaming Multiprocessor

A CUDA function typically creates many, many threads. To handle all these,
the Fermi architecture has a large number of cores organized into a hierarchy
of groups that share different amounts of extra resources. At its heart lies 16
Streaming Multiprocessors (SMs).

A Streaming Multiprocessor is a collection of tightly coupled Streaming Proces-
sor cores (SP) along with some shared accessories. To enable a large number
of cores, NVIDIA makes each of the SP cores simple. For example, common
but difficult functions like sin and reciprocal are delegated to a few separate
hardware units within the SM, called Special Function Units (SFU).

In Fermi, each SM contains 32 SP cores. Each core is capable of doing both inte-
ger and floating point operations. Their shared accessories include four Special
Function units, 16 Load/Store units, and 64KB SRAM for shared memory and
shared cache. A simplified diagram of a smaller SM is shown in Figure 3.3.1.

11
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Single-Instruction Multi-Thread
instruction scheduler

time
warp 8 instruction 11
warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12
warp 3 instruction 96

Figure 3.3.2: Warps of 32 threads execute

3.4 WARPS OF THREADS

Threads in Fermi are grouped together in logical units of up to 32 threads. This
corresponds to the 32 Streaming Processor cores in a Streaming Multiproces-
sor. The 32 threads are collectively called a warp. Threads in the same warp
always execute the same instruction at the same time. This way, only a single
instruction fetch operation per warp is required for the SM.

Many warps may be active in an SM at any time, and each thread in each warp
has its own set of registers within the SM. This enables fine-grained interleaving
of warps without needing expensive context switches with every warp switch. A
simplified example execution order is shown in figure 3.3.2. Scheduling warps is
difficult, but it is important for filling the pipeline with useful instructions, as
discussed in chapter 2

As noted, all instructions in the same warp runs the same instruction. After a
conditional statements, however, different threads of the same warp will likely
need to perform different instructions. This is the concept of thread divergence.
NVIDIA’s GPUs support dynamic thread divergence by moving threads between
warps as they diverge.

3.5 HELPFUL INSPIRATION

The concepts employed in NVIDIA’s Fermi architecture and CUDA program-
ming model are, needless to say, effective for parallel calculations. They have
been a source of inspiration for this project. Most these concepts, like kernels,
warps, and easy context switches, will return later in the report. Although they
return in simplified versions, they are helpful for exploiting parallelism.

12
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4.1 A GRAPHICAL DEMO MACHINE

The system created in this project is named Demolicious. It is made for running
graphical demo’s, which is the inspiration for its name. A graphical demo is a
visually pleasing programming feat made to demonstrate the capabilities of the
computer as well as the programmer.

Demolicious is inspired by modern PCs’ CPU-GPU coordination, both in its
programming model and its architectural design. The CPU will handle pro-
grams by default, and offload parallelizable tasks to the GPU. It will run on a
microcontroller. The GPU will handle parallelizable tasks, like the many graph-
ical operations in a demo, and send graphical data to screen. Its architecture
will be designed and implemented on an FPGA.

Modern GPUs have long development cycles and are very complex. Demolicious’
GPU architecture is necessarily a greatly simplified version. Because of time
constraints, many features that define modern GPUs had to be left out in its
design. The GPU has no branching, and there are no caches. Modern GPUs
have dynamic scheduling to better utilize the resources. The Demolicious GPU
uses barrel processing as a static scheduling scheme, and to hide memory latency.

13
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4.2 DEMOLICIOUS REQUIREMENTS

For Demolicious to support interesting demos, a set of basic requirements was
listed for it. It certainly needed to display graphics, and a goal was to use
HDMI for it. This decision was partially based on the excitement that it had
not been done before in earlier Computer Design Projects, and partially on the
fact that it is a modern technology. Driving video output from the custom GPU
was important because a key point of the design was for it to mirror a modern
GPU’s purpose in a computer system.

Energy efficiency needed to be a primary concern throughout this project. In
an experimental system like Demolicious, that concern will often be sidelined
to making anything work in the first place. Energy efficiency is, after all, an
optimization. Design philosophies like simplicity in GPU architecture and re-
dundancy in PCB options collide somewhat with energy concerns, and both
were essential in producing a working system in the short timespan of this
project. One very significant energy optimization for Demolicious made the list
of functional goals: setting the CPU to sleep mode when it is idle.

The performance goals were set to be challenging but still reasonable, based
on a very rough estimate of potential memory bandwidth and FPGA clock
frequency. Writing interesting demos for the completed machine would be a
bonus. A related bonus would be to write helpful tools to assist in writing
the demos. Table 4.2.1 below lists the initial functional goals, together with
priorities, that were decided upon for Demolicious.

Demolicious Functional Goals Priority
Demolicious should be general purpose HIGH
Demolicious should display graphics on screen HIGH
Demolicious should let its CPU sleep while the GPU | MEDIUM
executes

Demolicious should use HDMI for its graphics output | MEDIUM
Demolicious should drive video output from its GPU | MEDIUM

Demolicious should display a frame of 512 by 256 | MEDIUM
pixels

Demolicious should handle an output rate of about | MEDIUM
30 frames per second

Demolicious should have an example application in | LOW
the form of a visual demo displayed on screen

Demolicious should have a toolchain to make life eas- | LOW
ier for programmers

Table 4.2.1: Goals set for the Demolicious system

14
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CHAPTER 5

SYSTEM OVERVIEW

5.1 LOGICAL SYSTEM STRUCTURE

CPU —
—_—
GPU Data
memory
HDMI
controller

Screen output

Figure 5.1.1: Logical overview of the system.

A conceptual overview of the Demolicious computer is depicted in figure 5.1.1.
On a large scale, it is made up of a CPU and a GPU. In addition, an external
memory chip is used for storing framebuffers for screen output. A dedicated
HDMI module reads pixel data from the framebuffer and displays it on screen.

16
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5.2 PROGRAMMING MODEL

Sequential code Parallel code

CPU GPU
Kernel

Figure 5.2.1: Relationship between CPU and GPU code.

The programming model for Demolicious is heavily inspired by CUDA.

So let’s see how we can implement the same program filling a framebuffer with
green, as we did in the CUDA introduction in section 3.2.

Below, in listing 5.1, the fillscreen kernel has been converted for the Demolicious
programming paradigm. The first thing you’ll notice is that it is not written in
C, but assembly. The complete introduction to the Demolicious instruction set
and assembly programming can be found in appendix B.

1di $data, 0b0000011111100000
mv Saddress_lo, $id_lo

mv Saddress_hi, $id_hi

sw

thread_ finished

Listing 5.1: A simple kernel that fills the screen with the color green

Let’s walk through the kernel one line at a time.

The first line uses the 1di instruction, which stands for load immediate. It
loads the value 0b0000011111100000, which corresponds to the color green in
the Demolicious color space, into the special register $data.

The second and third line move the kernel’s thread ID into the address registers.

Finally, the store instruction is executed, storing the value in the $data register
to the address given by the two address registers. This means all pixels starting
with address zero and up until the number of executed threads will get colored
green.

The thread stops running after executing the thread_finished instruction.

5.2.1 EXECUTING KERNELS

Now, how do we execute this kernel on the GPU? The program running on the
CPU, referred to as the host program, has to upload the assembled kernel to
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the GPU, and then tell the GPU to run it. Kernels can be assembled using the
provided assembler (section 9.1).

instruction_t fill_screen_kernel[] = {
0x08050000, // ldc S$data, 0
0x00402004, // mv Saddress_lo, $id_lo
0x00201804, // mv Saddress_hi, $id _hi
0x10000000, // sw
0x40000000 // thread finished

bi

kernel_t fill_screen = load_kernel (fill_screen_kernel);

run_kernel (fill_screen, 4096);

Listing 5.2: Loading and executing a kernel

In listing 5.2, we first see the assembled kernel stored in the fi11l_screen_kernel

array. It is then uploaded to the GPU using the load_kernel function. A
reference to the uploaded kernel is returned, which will be used when starting
the kernel. In addition, the run_kernel function is also provided with the
number of threads to spawn. Here, we spawn 4096 threads, enough to color
64*64 pixels green.

While being able to make the screen green by running a specialized kernel is
nice, it would require many similar kernels to color the screen in different colors.
To improve on this, kernels can take parameters as input, which lets them be
reused with varying output. The CPU can set these parameters to different
values each time a kernel is run. For instance, the CPU can set the desired
color as a parameter, and the kernel will store that value to memory instead of
a predefined immediate. Listing 5.3 shows an example kernel where the color is
stored as a parameter.

ldc sdata, 0

mv Saddress_lo, $id_lo
mv Saddress_hi, $id_hi
sw

thread_finished

Listing 5.3: A kernel loading the color value from a parameter
The only changed line in this kernel is the first one, where instead of using an
immediate value, we load a value using the 1dc (load constant) instruction. The
value is a constant from the kernel’s viewpoint, as it cannot be changed from

the GPU. Instead, the value is set from the CPU using the load_constant
function, as seen in listing 5.4.

load_constant (0, 0x001F);
run_kernel (fill_screen, 4096);

Listing 5.4: Now drawing a blue screen using parameters
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5.2.2 MORE ADVANCED KERNELS

The instruction set available to kernels is fairly limited. Most notably, the
control flow in kernels is linear, meaning they cannot do any branches or jumps.
See section for more detail.

Although the kernels don’t support diverging control flow, conditional execution
is accomplished through predicated instructions.

Each of the instructions in the instruction set (except for loads and stores) can
be executed conditionally by prefixing them with ’?’. Whether a conditional
instruction is executed is controlled by a dedicated mask register. The pro-
grammer may use arithmetic and logic operations to manipulate this register
(such as the srl instruction on line 3 in listing 5.5). The result of a predicated
instruction will be discarded if the mask register is 1.

lde $10, 0 ; Load color one

1ldec $11, 1 ; Load color two

srl Smask, $id_lo, 6 ; Shift to the right converts ID to y pos
mv Sdata, $10

? mv $data, $11 ; Will only be executed every other row

mv Saddress_lo, $id_lo

mv Saddress_hi, $id_hi

sw

thread_finished

Listing 5.5: Conditional execution using predicated instructions

The kernel starts by loading two color parameters. It then stores a shifted
thread ID into the mask register. Shifting a thread ID to the right is a trick
to convert the ID to a y value, which works when the screen width is a power
of two. The mask register is only 1 bit, and will just store the least significant
bit written to it. This means that masking will be enabled for odd rows and
disabled for even rows. Line 4 first writes a color value to the $data register.
When masking is disabled this value will be overwritten on line 5. The kernel
finishes by writing the data value to memory.

This section contains some simplifications, namely some nop instructions that
are required under some specific circumstances have been omitted. The actual
kernel code that is sent to the GPU for the kernel that fills the screen with green,
can be seen in listing 5.6. The kernel from listing 5.5 however, is executed as is.
The reason for these nop instructions will be explained in later chapters.

1di $data, 0b0000011111100000
mv Saddress_lo, $id_lo

mv Saddress_hi, $id_hi

sw

nop

nop

nop

thread_finished

Listing 5.6: The green-screen kernel as it is actually
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As illustrated by these examples, the kernels on Demolicious are more limited
than CUDA kernels, but the programming models are very similar. With these
examples in mind, it’s time to take a look behind the scenes and see how the
CPU and GPU actually run this code.
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CPU

Now that we have seen how to write a kernel that colors the screen with a beau-
tiful green color, it is time to see what is actually happening on the Demolicious
System during its execution.

Our journey starts in the main control unit of the Demolicious computer, namely
the CPU, which is implemented on an Silicon Labs Giant Gecko Microcontroller.

In this chapter we will follow the kernel from load to execution and explain what
happens behind the scenes on the CPU, which is the component on Demolicious
that runs the C code seen in the previous chapter.

6.1 FUNCTIONALITY

The main tasks of the CPU are summarized below:
e Load kernels into instruction memory on the GPU.
e Load kernel parameters into the GPU’s constant memory.
e Load data sets into external memory.

Start the execution of a kernel.

e Read data back from external memory.

6.2 COMMUNICATION WITH THE GPU

The backbone of the interaction between the CPU and the GPU is the wide
bus connecting them. Since the GPU is designed to increase the performance
of the system by parallelizing operations, it’s important that the bus does not
introduce too much overhead. We therefore designed a parallel bus based on the
EBI (External Bus Interface) specifications provided in the reference manual for
the EFM32GG|8, p.175]. The bus has a 16-bit data line, and a 20-bit address
line, as well as six control signals.
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All the pins connected between the MCU and the FPGA follow the specifi-
cations from the EFM32GG’s Reference Manual[8, p.175]. This allows us to
utilize the built-in support for EBI which memory maps the whole bus on the
microcontroller, and take advantage of utility functions in the emlib software
library[10]. The mapping of addresses can be seen in figure 6.2.1.

The CPU can interface three different memories for different purposes:
1. Constant memory, for storing constants which may be read by kernels.
2. Instruction memory, for storing the kernels.

3. Data memory, for storing the framebuffer, in addition to other data for
kernels.

0x80000000 0x80040000 0x80080000 0x80100000 0x84000000

Constant Instruction Kernel start | X External
Memory Memory area memory

Figure 6.2.1: Overview of memory mapped address spaces on the CPU.

Writing to all of these memories is done by writing to the memory addresses
outlined in figure 6.2.1, in the same way as writing data locally on the micro-
controller. Data can also be read back from the external GPU memory. Even
the task of starting kernels is done the same way, to be able to utilize the same
bus for all GPU communication.

6.3 LOADING A KERNEL

As seen in the Programming Model chapter, host programs can upload kernels
to the GPU. They should preferably do so at the beginning of the program, to
avoid delays during execution.

The CPU’s Demolicious library has a built-in function for this called 1oad_kernel,
seen in listing 6.1. It takes an array of assembled instructions as parameter, allo-
cates memory on the GPU and uploads the kernel, before it returns a reference

to GPU memory pointing to the start of the kernel. This reference is used when
starting kernels.

1 kernel_t fill_screen = load_kernel (fill_screen_kernel);

Listing 6.1: A load kernel function call with the fillscreen kernel
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Write Instruction
load k Ik | instruct Instruction address
Host oad_kernel(kernel_instructions) cPU GPU
Program
Instruction (hi/lo)
Figure 6.3.1

Seeing as instructions are 32-bit large, and the data bus is only 16 bits, every
instruction load must be divided in two writes.

6.4 RUNNING A KERNEL

To run a kernel, the host program executes the run_kernel function with a
reference to the kernel address, as well as the number of threads it wants to
spawn. Listing 6.2 shows the code required for running a kernel.

run_kernel (fill_screen, 4096);

Listing 6.2: Running a kernel

Kernel address

Number of batches

Start kernel

run_kernel(kernel, n_threads)
Host Program CPU GPU

Kernel complete

Figure 6.4.1: Starting a kernel on the GPU.

To tell the GPU to start executing a kernel, there are two pieces of information
the GPU needs. Which kernel should be started, and how many threads should
be executed. As can be seen in figure 6.2.1, there exists a dedicated address space
for starting kernels. It is the same size as the instruction memory, meaning any
valid instruction address will be valid also in the start kernel space. Writing to
the instruction address, but in the start kernel space instead of the instruction
memory will tell the GPU to start executing from that particular instruction.

23



1

CHAPTER 6. CPU

When writing to this start kernel address, we use the data value for telling the
GPU how many threads should be spawned. For example, say the £111_kernel
reference points to instruction 100 in instruction memory. Then, executing the
code in listing 6.2 will write the value 4096 to address 100 in the start kernel
area.

Actually, writing the number of threads to spawn will limit the maximum num-
ber of threads to 216, as the data bus is 16 bits wide. This will not suffice for
our target resolution of 512*256, when running one thread per pixel, as that
requires 27 number of threads. Instead, the number of batches of threads is
written to the GPU. A batch represents the number of threads which are active
in the GPU at the same time. The number of threads in a batch will typically
be between 8 and 32 depending on the size of the GPU. What’s important is
that this work-around will help in increasing the number of threads that can be
spawned from 2'¢ up to 22

Only one kernel can execute at the time in the GPU. Because of this, the
run_kernel call is designed to block until the kernel has completed execution.
This is implemented by having a dedicated signal from the GPU to the CPU
which will be asserted whenever the GPU is idle. The CPU can sleep when the
GPU is executing and wait for an interrupt on this signal, saving energy while
waiting for the GPU.

6.5 LOADING PARAMETERS

The last important feature of the CPU library is to provide support for set-
ting kernel parameters. As seen in listing 5.4, this is implemented in the
load_constant function. The call takes an address and a value as parameters,
as can be seen in listing 6.3

load_constant (0, 0x07EO0);

Listing 6.3: Setting a kernel parameter

Constant address

Host load_constant(offset, value)

Program cPU GPU

Constant value

Figure 6.5.1: CPU-GPU interaction when loading a parameter.

The load_constant function is simply implemented by writing the constant
value to the requested address, as seen in figure 6.5.1.
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6.5.1 SUMMARY

We have now seen how our kernel is bootstrapped and executed. The assembled
kernel is uploaded to the GPU which is then given a command to run said kernel
with one thread per pixel. Kernels can also read parameters which the host
program can easily vary between kernel runs.
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GPU

We know how to write a kernel, and how to start it. Let’s deep dive into the
heart of Demolicious; the GPU! In this chapter we follow our kernel all the way
from the GPU gets the commands from the CPU, through the execution of all
the threads, into memory and finally to the screen over HDMI.

The Demolicious GPU is implemented on a Spartan-6 FPGA, a programmable
hardware chip. The architecture has been designed, sketches drawn, and lastly
implemented with VHDL; a hardware definition language.

7.1 RESPONSIBILITIES

The GPU has the following responsibilities:
1. Receive instructions and constants from the CPU
2. Handle kernel invocations from the CPU
3. Write results to external SRAM
4. Assert the 'computation finished’ signal to the CPU
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7.2 ARCHITECTURE OVERVIEW

Instruction Commur!icanon cPU
memory unit
Control
unit

Processor cores

core core core core

GPU

Thread spawner

HDMI

_

Video
unit

Constant
memory

Load/Store unit

Memory control

Figure 7.2.1: A high level overview of the GPU.

Figure 7.2.1 presents a high level overview over the GPU. The CPU issues
commands to the communication unit in the GPU. Instructions are fetched
from the instruction memory and decoded by the control unit, which has the
responsibility of setting the control signals for the instructions. Control signals
go to all cores of the GPU. The processor cores access memory through the
load /store unit, and get constants from the constant memory. The video unit
reads pixels from the data memory and outputs them to a screen over HDMI.

7.3 RECEIVING A KERNEL CALL

EBI

Al

GPU

CPU

~
Kernel address

Number of batches

Start kernel

Communication
unit

Kernel complete

%_/

Kernel address

Number of batches

Start kernel

Kernel complete

Thread spawner

Kernel address
PC

Thread Ids

Figure 7.3.1: Launching a kernel from the GPU’s viewpoint.
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The communication unit is responsible for receiving kernel call requests from
the CPU. When a kernel call is received, the kernel launch signal is asserted. A
kernel call consists of the address of the kernel, and the number of threads to
launch.

The kernel launch signals are forwarded to the thread spawner, which writes the
kernel start address to the PC register, and starts distributing thread IDs to
the processor cores. After holding the kernel launch signals high, the commu-
nication unit has completed its role in launching the kernel. When the kernel
completes executing, the thread spawner asserts the kernel done signal, and the
communication unit forwards the signal to the CPU, indicating that the kernel
call has completed.

7.4 RUNNING A KERNEL

7.4.1 WARPS

As in NVIDIA’s Fermi architecture (see chapter 3), Demolicious organizes threads
into warps. In Demolicious, the warp size is the same as the number of processor
cores. For versions with fewer cores, the warp size changes accordingly. Just
as the warps in Fermi, every thread in these warps always execute the same in-
struction at the same time, with one thread in each core. Note that while Fermi
has multiple Streaming Multiprocessors which can each execute warps concur-
rently, Demolicious can only execute a single warp at a time. The Demolicious
system is analogous to having a single Fermi Streaming Multiprocessor.

An important difference between Demolicious and Fermi, is that Demolicious
kernels have no jumps, so its threads never diverge. This significantly reduces
the complexity of scheduling these warps, and let’s us get away with a single
program counter.

7.4.2 STATIC SCHEDULING

As every thread in a warp always executes the same instruction, our system
needs to handle 8 memory requests being issued during the same cycle. The
memory system for Demolicious consists of two SRAM chips, and can return
two words every cycle. This bandwidth is not sufficient to satisfy the set of
8 memory requests produced by a warp without stalling. Occasionally, these
stalls can be hidden by the programmer if loads are issued ahead of their usage.
However, when the program does not have enough useful instructions to do
while waiting for loads, the GPU must stall. Stalling a throughput-oriented
machine is obviously unfortunate.

But there are many warps waiting for execution at (almost) any time. If these
warps could execute while other warps are waiting for memory, we can utilize
the system better. However, changing between warps that execute requires a
context switch. That is, the old thread put on hold has to store all its register
values somewhere so that they can be available when it starts executing again.
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Instruction A: Idc $data, O

Instruction B: mv $address_lo, $id_lo
Instruction C: mv $address_hi, $id_hi
Instruction D: sw

Instruction E: thread_finished

A° B C°® D? E* A® B* c® p¥ E®
Al B° C° DB EY A% B® C 29 D32 E36
A 2 B 6 C 10 D14 ElB AZZ B26 C 30 D33 E37
A 3 B 7 C 11 D15 E19 AZ3 BZ7 C 31 D34 E38

Figure 7.4.1: Execution timing of warps without jagged scheduling

In software multi-threading, a context switch is typically achieved by storing
all registers to memory and loading in the registers for the new thread that is
scheduled. This is an expensive operation, and would introduce more latency
than we are trying to hide. Demolicious, however, has a set of active warps
that all have their own registers. So a context switch can be carried out with
virtually no overhead, at the expense of some additional hardware to store all
these extra registers.

To keep the architecture as simple as possible, Demolicious employs a simple
static scheduling algorithm. The active warps are simply rotated after every
instruction. In figure 7.4.1 we revisit our green-screen kernel, and see how the
warps are scheduled. The numbers in the top right corner is the GPU cycle, and
we refer to the rows as barrel lines. During cycle 0, instruction A is executed on
warp 0. The next cycle, instruction A is executed on warp 1. And when we get
to cycle 4, warp 0 is scheduled again, this time executing instruction B. This
continues until we reach clock cycle 16-19 where warps 0 through 3 executes
instruction E, the thread finished instruction, which does no computation, but
allows the GPU to set up new warps. On cycle 20, warp 4 is set up and ready
to execute the first instruction. This pattern continues until all threads have
run to completion.

However, there is an issue with this simple scheduling algorithm. Let’s see
what happens when we get to instruction D, marked in red. In clock cycle 12}
all threads in warp 0 execute a memory request, resulting in 8 simultaneous
memory requests. As our memory system handles only two requests per clock,
it is busy the next 4 cycles with these requests. When warp 0 gets to execute
its next instruction, the memory operation is complete for all the threads in the
warp. Had this been a load instead of a store, the loaded value could already
be used its instruction, and we have avoided a stall. So far, so good. However,
when warp 1 executes the store instruction in cycle 13, the memory is already
busy with the request from warp 0. The memory requests from warp 1 will
not be started before cycle 16, and will therefore not be complete for its next
instruction. It is even worse for warp 2 and 3. As all warps execute the same
code, this can introduce up to 8 nop instructions for every warp.

1The cycle numbers are written in the upper right corner of each square
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Instruction B:
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Instruction D:
Instruction E:

Idc $data, O
mv $address_lo, $id_lo
mv $address_hi, $id_hi

SwW

thread_finished
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Figure 7.4.2: Execution timing of warps with jagged scheduling

Clearly, the introduction of this barrel processing technique did not solve our
problems. Fortunately, this was a simplified version of the scheduling in Demo-
licious. The actual scheduling is shown in figure 7.4.2. By introducing an offset
in the instructions executed, henceforth called jagged execution?, we can avoid

this issue.

With this scheduling, you can see that there are 4 cycles without a memory
operation between every memory operation. This is true as long as memory
operations have 4 non-memory operations between them in the kernel. It is up

to the programmer or assembler to ensure that this holds.

This warp scheduling algorithm will guarantee that nops are not required after
loads, as long as they are spaced far enough apart.

20r "jaktstart" as we like to call it in Norwegian
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7.5 MODULE DETAILS

Register file select

7.5.1 PROCESSOR CORE
Instruction
I
* onstant select
Shift amount
ALU function
Control Immediate enable
Immediate value
Processor
Core
Register A
Register Register B ALU
drectory o)

Warp
scheduler

1

ALU result

Write data

Constant value

———— N
I I
I Thread I

1 spawner |
I I
l_ J
—— —— =N
I I
I Load store I

- unit |
I I
|

Constant memory

Figure 7.5.1: A single processor core.

Each processor core contains an ALU and a register directory. On each clock
cycle the ALU receives the selected values from the register directory. On the
same cycle, the value is written back to the register selected by the control unit.

If the current instruction is a load constant instruction, the control unit selects
which constant to fetch from constant memory. The constant enable signal is
asserted, causing the multiplexer to select the constant value as the write back

To perform immediate instructions, the control unit asserts the immediate enable
signal. The immediate value is then selected by the multiplexer and used as an
operand in the ALU.

The architecture contains multiple processor cores like the one in figure 7.5.1.
Each of the cores receive the same control signals for the instructions.
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7.5.2 THREAD SPAWNER

Kernel complete

Communication
unit Start

Number of threads

Instruction
structio Kernel address

} Finished J
Control Thread spawner
Control signals
Processor Thread ID
cores ]
Thread ID write enable

Figure 7.5.2: Thread spawner and neighboring components.
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Figure 7.5.3: Thread spawner RTL implementation.

The thread spawner is responsible for overseeing kernel execution. It will spawn
threads whenever necessary, handling thread setup and ensuring that the re-
quested kernel is executed. When all threads have finished executing, it will
assert the kernel done signal, notifying the host program that computation has
finished.

When a kernel invocation request is received, the thread spawner stores the
provided base address of the kernel, the number of threads to spawn, and sets
the next thread ID register to zero. Threads are spawned one warp at a time into
the currently active barrel line. Therefore, on kernel start the thread spawner
will spawn threads until the warp scheduler has made an entire rotation, or a
barrel roll as we call it.

When a thread finishes execution, the control unit will assert the finished signal
to the thread spawner. If there are threads left to spawn, the currently active
barrel line will be filled with a new warp of threads.

But what does the spawning of a warp of threads actually entail? All threads
need a unique thread ID. If the value of the next thread ID register is 4, and we
have 4 processor cores, core zero will write 4 to its thread ID register, core one
5, and so forth. The next thread ID register is then incremented by the warp
size, increasing it from 4 to 8.
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7.5.3 REGISTER DIRECTORY

Processor
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_
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Load-store
unit

i

Barrel height
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Figure 7.5.4: The register directory, and its neighboring components.

There is one register directory per processor core. Each register directory con-
tains one register file per barrel line. The register files include seven dedicated
registers, and nine general purpose registers, listed in table 7.5.1.
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Register number Description RW

$0 Zero register Read-only
$1 ID High Read/Write
$2 ID Low Read/Write
$3 Address High Read/Write
$4 Address Low Read/Write
$5 LSU data Read/Write
$6 Masking register Write

$7 - 815 General purpose registers | Read/Write

Table 7.5.1: The registers contained within the register files.

Individual register files are selected by using the register file select signal. Using
this signal, the warp scheduler selects the active register file. Within the register
directory, signals are routed to the active register file using the select signal.
Consequently, from the processor core’s point of view, there’s just one register
file.

In the architecture the dedicated registers have special functions. Ignoring regis-
ters $0 and $6, the dedicated registers may be used as general purpose registers.

The masking register is used to enable conditional execution, as introduced in
section 5.2.2. When executing predicated instructions, the masking register
is used to disable writes to the register file. This makes the instruction have
no effect. The physical implementation is seen in figure 7.5.5. To reduce the
complexity of the architecture, store word instructions cannot be predicated.
Instead, the programmer has to manage the values written explicitly.

Masking bit

Is predicated

Control

Register write enable

Register write enable
Register file

Figure 7.5.5: Using the mask bit to disable register writes.

Data memory addresses are 20 bit wide, and thread IDs are 19 bit wide. The
word size is only 16 bits. To represent these values, they are split into two
registers.

The load store unit (LSU) has a separate signal for selecting which register file
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to write to. Using this signal, the LSU can write data loaded from memory into
any register files on its own.

7.5.4 SRAM ARBITER

The SRAM arbiter connects the LSU, HDMI unit and CPU to the SRAM.
As multiple units may request access to SRAM at the same time, and the
Demolicious system is using an interlaced memory model, dedicated access to
SRAM cannot be guaranteed. Therefore, a prioritization scheme is required.

The CPU has the highest read-write priority. As the host program by convention
shouldn’t access memory when kernels are executing, this is fine. The LSU
comes in second, as it needs uninterrupted access to SRAM during execution.
If the HDMI unit could prevent the LSU from accessing memory, the result of
a kernel executions could differ based when the HDMI unit chooses to read the
current framebuffer. Therefore the HDMI unit has the lowest priority, having
to scavenge pixels whenever it can.

7.5.5 LOAD/STORE UNIT

Control Load enable
unit Store enable SRAM
Control
Current barrel row signals

Write Read
Request queue Mem ctrl

data out data in

Memory
Request
read data ) b o cessors
Request queue Nem ctr] Request

’ Request] [ Request] ’ Request] —>

Memory

addresses
Processors | Memory
write data

s
2
H

Request

Write Read
data out data in
Control
signals:

SRAM

Figure 7.5.6: RTL of the load/store unit. Notice the dual queueing system to
handle the interlaced SRAM.

A load/store unit, shown in figure 7.5.6, is responsible for handling memory
requests from the core processors. The load/store unit of Demolicious needs to
be capable of simultaneously servicing incoming requests from all the processor
cores. Requests are asynchronously carried out in the background, and replies
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Figure 7.5.7: The logical overview of the video unit. A prefetching unit tries
to fill the buffer when it is not full. The Accepted signal signifies a successful
memory request. Across the clock domain boundary, the video timing unit
generates control signals. When pixel data should be transferred, the Send
signal moves pixels from the buffer to the transmission units. The 16-bit pixel
data is converted to three 8-bit colors, TMDS encoded, serialized and output
using differential signaling. Should the buffer go empty, the prefetch unit needs
to immediately advance to the next pixel to stay synchronized with the timing
unit.

are delivered directly into the appropriate registers of the threads that made
the request.

Demolicious has two independent memory banks, each capable of reading or
writing one word every cycle. To maximize the throughput to the memory, a
word-striping scheme is used: The lowest bit of the memory address determines
which bank holds that location.

Because there are two independent memory banks, the incoming requests are
routed to two separate queues, one for each memory. Each queue then feeds
requests to its associated SRAM chip. Read responses are then handed to the
write-back unit, which delivers the data to the appropriate register file.

The queues are necessary because Demolicious has more processor cores than
memory banks, so all the requests from a warp can not be completed in a single
cycle, as discussed in section 7.4.1. The processor cores work in tandem, and
issue requests simultaneously. It takes several cycles to complete the requests
for a single warp. Since there is a limit to how many requests can be in the
queue at any time, there is also a limit to how often requests can be issued.

7.5.6 HDMI

From a demo makers perspective, a GPU without a video output is commonly
known as a space heater. Demolicious uses HDMI for its video output, making
it easy to connect to any recent video display.

HDMI is a streaming protocol; the receiver reads data from the cable at a
fixed rate. In Demolicious, the GPU has priority access to the memory. This
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means that the video unit may not have access to the framebuffer (which lies in
memory) when it’s time to send a pixel. To alleviate this issue, as much of the
framebuffer as possible is prefetched into a buffer whenever memory is available.
Should the buffer underflow, black pixels will be sent instead. Otherwise, pixels
will not be synchronized with the position they should appear at on the screen.

Control signals assert where in the data stream a new frame of video starts and
ends. These allow the receiver to determine the resolution and refresh rate of
the video.

The lowest resolution supported by HDMI is 640x480. As this is larger than
our framebuffers (64 x 64 pixels), a letterbox is added around the picture. For
debugging purposes, the letterbox consists of a low-contrast checker pattern.

To actually send the data over HDMI, control signals and pixel data are split into
three channels. They are then encoded using a scheme known as TMDS. The
purpose of TMDS is to minimize the effect of noise over the physical connection.

TMDS uses 10 bits to encode either an 8-bit color value when sending an image,
or control values when not. Demolicious uses a 16-bit word size, so colors are
represented with 5 bits for red, 6 for green and 5 for blue. These are resized
to 8-bit values using a scheme that allows for both complete black and white
colors. Each channel is then serialized before being output together with a clock
using differential-signaling.

Finally, to avoid a visual artifact known as screen tearing, a technique known
as V-sync with double buffering is used. These techniques ensure that only
complete frames of video are output, increasing visual fidelity.

7.5.7 SUMMARY

The journey of our kernel is complete. We have followed it all the way from
the initial load _kernel call to the screen. It has traveled through the massively
parallel GPU, which can handle a vast amount of threads, using a round-robin
static scheduling technique called barrel processing.
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Figure 8.0.1: Completed PCB

The entire Demolicious system is implemented on a PCB (Printed Circuit
Board). This chapter will give an overview of the hardware architecture, and
detail design choices made during the realization of the design.
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8.1 BACKUP ORIENTED DESIGN

Verifying a PCB design is difficult. If the circuitry has been designed incorrectly,
there may not be much that can be done, except for designing a new PCB.
Because of this, the PCB has backup solutions for all major components, and
exposes as much as possible of the important circuitry on headers. This enables
us to probe signals for debugging purposes, and also do manual rewiring in case
of faulty wiring.

USB Serial Port
Input Input
PINS PINS
VGA MCU ARM PROG
Output Main Component Input
PINS PINS
SPI EBI
BUS BUS
PINS PINS
VGA FPGA HDMI
— PINS —
Output Main Component Output
PINS

PINS

JTAG
SRAM

Input

Main Component
PINS

Figure 8.1.1: Conceptual overview of the PCB. Green boxes are main solutions.
Blue boxes are backup plans. Gray boxes labeled "PINS" mean that these
signals are exposed on headers.

These backup plans are in place to make sure the board will work, even if some
parts are broken. That way, each component can be connected to other sources
than those on the board alone. Because of this, the board is not optimized for
the smallest size possible, but was rather made to optimize for highest possible
chance of success.
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8.2 INPUT

The main method of communication between the microcontroller and a host PC
is by USB. The USB circuitry is designed with ESD protection in an effort to
lessen the risk of frying the PCB. Should the USB fail, a serial port (RS-232)
has been implemented as a backup solution. If this also fails, the wires from the
serial port is put on headers, which can be used as GPIO pins. If all else fails,
the program to be run on the machine can be included when programming the
MCU through the programming interface.

8.3 OUuUTPUT

The main source of output from the PCB is an HDMI connector. This is a novel
feature this year, as no previous group has tried to implement it before.

Because of this new challenge, a lot of backup schemes were put in place. The
HDMI connector is put on headers, in case the connector fails. A VGA module
is connected to the FPGA, in case the HDMI does not work. And if this fails,
a separate VGA module is connected to the microcontroller.

8.3.1 HDMI IMPLEMENTATION

The general HDMI specification consists of the Transition Minimized Differ-
ential Signaling (TMDS), and some additional wires for details regarding the
transmitted signal [4]. However, we were able to produce a video feed on a
screen from an FPGA using only the 8 TMDS wires by cutting up an HDMI
cable and using only those wires. Upon seeing that this was feasible, we de-
cided to make the HDMI hardware with a TMDS connection only, going in to
the FPGA. The resulting hardware was then an HDMI type-A receptacle foot-
print, the HDMI receptacle and a header between it and the FPGA. The reason
for adding the header was that this setup is equivalent to the aforementioned
prototype version. If the HDMI output wouldn’t work we could connect the
terminated HDMI cable onto the header.

8.4 POWER

The system is powered by a 5V mini USB. This connection powers two voltage
regulator circuits. Respectively, the 1.2V wire that powers the FPGA (excluding
the I/O banks) and the 3.3V power plane that powers up the rest of the machine.
The 5 volt USB connection has a backup solution in the form of a header through
which it passes immediately after entering the PCB. This is done so that the
incoming electricity can easily be probed for voltage level and also so that in
case the USB connection fails, an external power supply can be connected to
the board.
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Figure 8.4.1: Picture of the physical power circuit, where P5 is the header on
which an external power source can be connected

8.5 BUS

The bus between the MCU and FPGA is an EBI connection. The EFM32GG990
has dedicated pins for the EBI, which can be found in the datasheet [9] to the
MCU. Headers are placed in between the MCU and FPGA in case of failure on
either side of the connection, as well as an easy way to check transmitted signals
during debugging.

8.6 CLOCKS

Both the MCU and the FPGA need an external clock. According to the design
consideration AN0002 [7] the MCU needs two crystals, a low frequency crystal at
32.768kHz and a high frequency crystal at 48MHz. For the FPGA, an oscillator
of 120MHz was chosen.

Headers are placed between the oscillator and the FPGA. The headers serve
as a backup in case an external oscillator is needed and act as a debugging
tool. The microcontroller clocks on the other hand have a backup solution in
that the microcontroller has internal RC-oscillators for use in case the crystals
malfunction.

8.7 MAIN COMPONENTS

MCU (EFM32GG990F512-BGA112)

The EFM32 Giant Gecko Microcontroller from former Energy Micro, now Silicon
Labs, is chosen as the microcontroller for this project. One aspect of the task
at hand is energy efficiency and this microcontroller is particularly efficient in
that manner. This is a proven microcontroller with a lot of development boards
available to us, so it seemed like a safe choice.
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FPGA (XC6SLX45-2CSG3241)

The FPGA of the Spartan-6 family from Xilinx was chosen as the FPGA. This
particular FPGA has been used for different tasks on the university before, and
the support systems are therefore available to us. A less powerful version of this
one was available for testing on development boards in the lab.

SRAM (AS7C38098A)

The SRAM AS7C38098A was chosen as the memory storage for this project
[6]. The reason for why this particular SRAM was chosen, was that to be able
to output graphical demos, we need to be able to store framebuffers, i.e. pixel
data which will be displayed on screen. We need memory large enough to hold
two framebuffers and a latency small enough to be able to read and write data
to the memory at an acceptable rate. This specific SRAM met the requirement
with a storage space at 512K words by 16 bit and a 10ns access time.
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ADDITIONAL TOOLS

9.1 ASSEMBLER

An assembler is implemented, to be able to run kernels written for Demolicious
on the GPU. The assembler is written in Python. In addition to supporting
assembly of all instructions supported by the GPU, it provides additional pseudo
instructions, as well as aliases for special purpose registers.

The assembler is available on GitHub https://github.com/dmpro2014/
simulator/.

9.2 SIMULATOR

In addition to the assembler, a tool for verifying the correctness of kernels before
they are run on the GPU has been developed. It is based on the same parsing
backend as the assembler, and simulates the execution of kernels, instruction
for instruction. When the set of threads have been simulated, a resulting frame-
buffer is rendered to screen. This tool has proven itself very useful when devel-
oping kernels, as it reduces the need of re-assembling and uploading kernels to
the GPU to verify the correctness of the assembly code.

The simulator is part of the same project as the assembler described in section
9.1.
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TESTING

10.1 GPU COMPONENT TESTING

The GPU consists of a number of fairly isolated components. It’s valuable to test
the components in isolation before they are connected. Both implementation
errors, and design flaws, can be uncovered before the components are introduced
to the system. The unit tests were implemented as VHDL test benches. Table
10.1.1 describes the unit tests that were run, and provides a summary of which
features were tested.
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WHAT

TESTING

STATUS

Barrel selector

Barrel row is incremented each clock
cycle.

Barrel row wraps around to 0.

PC write enabled high on row 0.

Passed

Constant memory

Constants can be written.

Constants can be read.

Passed

Inst decode/Control unit

Decodes instruction types correctly.

Sets control signal values correctly.

Passed

Instruction memory

Instructions can be written.

Instructions are read from the correct
address.

Passed

Instruction memory

Instructions can be written.

Instructions are read from the correct
address.

Passed

Register file

Read/write to general purpose regis-
ters.

Dedicated registers behave correctly.

Does the masking bit work?

Passed

Register directory

Multiplexes input/output signals to
the correct register file.

Passed

Processor core

Arithmetic operations.

Can mask instructions.

Passed

ALU

Computes arithmetic operations.
Can do left /right shifts.

Performs Set if less than correctly.

Passed

Table 10.1.1: Unit tests for components in the Demolicious system.

10.2 VHDL SYSTEM INTEGRATION TESTS

Before deploying to an actual FPGA, it is important to ensure correct behavior
in system-level testbenches. This testing is valuable, as if correct behavior can
be verified in simulation, there are fewer potential errors when debugging the

FPGA itself.

System tests for each of the major datapaths through the design have been
created and run successfully. The result of each test is verified by comparing all
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pixels in the framebuffer after the kernel has been run to precomputed values
in ISim.

10.2.1 MEMORY STORES AND KERNEL PARAMETERIZATION

To verify that stores to memory, as well as constant memory, actually works,
the kernel presented in listing 5.3 is used as a system test. It has been re-listed
in listing 10.1 for convenience.

ldc S$data, 0

mv Saddress_lo, $id_lo
mv Saddress_hi, $id_hi
sw

thread_ finished

Listing 10.1: Kernel to test constant memory and parameterization

Expected behavior of test:
1. The color green should successfully be loaded from constant memory.
2. It should be stored to memory.
3. The screen should be filled with the color green.

SIMULATION RESULTS

LSU write request
register write data
Constant to reg

Constant value

(a) Isim simulation showing constant load and store word

(b) LX16 run

Figure 10.2.1: Results from simulation and LX16 of fillscreen kernel
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In the left yellow square of figure 10.2.1a, one can see the load constant instruc-
tion being executed (0x08050000) in barrel line 1. The Constant to reg signal
is asserted, and the constant value 0x07EOQ is passed into the register write data
signal.

In the right yellow square, the store word instruction (0x100000000) executes in
barrel line 0. The LSU accepts the write request same cycle (LSU write request
goes high), and two cycles later the request packet reaches the LSU data line.
The LSU asserts LSU write n, (the signal is active low), and external RAM
handles the store request.

The testbench passes, and values have now been successfully written to memory.
It also runs on actual hardware, the result shown in figure 10.2.1b.

10.2.2 PREDICATED INSTRUCTION EXECUTION

Predicated instructions are used to allow for some degree of conditional ex-
ecution in the lack of proper branching and jumps. This requires that the
architecture actually respects the mask bit when set. The predicated execution
kernel presented earlier in listing 5.5 is used for this test. It has been re-listed
in listing 10.2 for convenience.

ldec $10, 0 ; Load color one

ldec $11, 1 ; Load color two

srl Smask, $id_lo, 6 ; Shift to the right converts ID to y pos
mv $data, $10

? mv S$data, $11 ; Will only be executed every other row

mv Saddress_lo, $id_lo

mv Saddress_hi, $id_hi

sw

thread_ finished

Listing 10.2: Conditional execution using predicated instructions

Expected behavior of test:
1. Each row should be colored according to the last bit of their y position.
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SIMULATION RESULTS

Active instruction

barrel

0: Thread ID

(a) Isim simulation showing successful masking.

(b) LX16 run

Figure 10.2.2: Results from simulation and LX16 of predicated execution

In the left yellow square of figure 10.2.2a, we can see the srl instruction being
executed (0x00023181). As this thread has thread id 192, the result out is 3.
The low bit is stored into the mask register, enabling masking for this thread.

In the middle yellow square, barrel 0 is once again active, and we can see that
the predicate bit of core 0 has been asserted. As this instruction isn’t masked,
the predicate bit is ignored and the value of 001f is stored into the data register.

In the right yellow square, the conditional data move is executed (0x81602804).
As the mask enable signal goes high, the register write enable signal is pulled
low due to the predicate bit, resulting in the data not being written to registers.

The testbench passes, and predicated instructions are not executed when mask-
ing is enabled. As can be seen in figure 10.2.2b, the kernel runs on actual
hardware, and every second line is colored differently.

10.2.3 LoADS FROM PRIMARY MEMORY

If one wishes to support multi-pass kernels, that is a kernel that uses the result
of previous kernels to compute its own result, then results have to be stored
and loaded from somewhere persistent. Stores to main memory have already
been confirmed working, so load instructions are up next for testing. With
functioning loads, it is fairly straightforward to implement things like Conway’s
Game of Life [1] for the Demolicious system.
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The fillscreen kernel from earlier is modified to load its value from main memory,
and store it back to the framebuffer. It is presented in figure 10.3.

mv Saddress_hi, $0 ; Load some color from main memory

mv $Saddress_lo, $0

1w

mv Saddress_hi, $id_hi

1di $8, 2

add $address_lo, $8, $id_lo

sSwW ; Store data to ID + 2, to avoid overriding
address 0

nop

thread finished

Listing 10.3: Kernel to test loads from main memory

Expected behavior of test:

1. The loaded color should be stored to the entire framebuffer

SIMULATION RESULTS

259,550 ns 259,600 ns 259,650 ns

LSU read request

SRAM mem request

(b) LX16 run

Figure 10.2.3: Results from simulation and LX16 of load kernel

Figure 10.2.3a shows a barrel of height 2 performing successful loads.

In the first cycle of the yellow dotted square, barrel row 0 executes a load
word instruction (0x20000000). LSU read request is asserted in the control, and
routed to the LSU. Two cycles later the request has passed through the LSU
unit, and SRAM responds with the value 55. In the last cycle of the yellow

o1



CHAPTER 10. TESTING

square, the LSU asynchronously writes the result back to the registers storing
the values on the LSU data write-back line to barrel row 0.

In the blue dotted square, the same procedure is executed again, this time for
the second barrel row. Notice that register file select is now set to 1, writing
the result back to the second barrel row.

The testbench passes. Multi-pass kernels can now successfully be implemented.

There is however a discrepancy between the simulation and the actual imple-
mentation, resulting in the LSU dropping some write-backs, as shown in figure
10.2.3b. Both the RAM used for simulation, as well as the SRAM located on
the PCB is combinatoric. On the development kit however, SRAM had to be
mapped onto block RAM due to a lack of space. This forces the RAM to be
clock driven, not allowing for the same-cycle memory responses required, and
therefore dropping write-backs.

10.3 VERIFICATION OF COMMUNICATION CHANNELS

10.3.1 JTAG TEST

In these tests we attempted to connect to respectively, the FPGA and the MCU
by way of the appropriate headers, thereby verifying that they had been properly
soldered in place and were functional.

WHAT HOW STATUS

Verify FPGA
JTAG’s ability to Flash code on FPGA that makes a Passed

fAash FPGA LED blink

Verlfy A,RM c.l(.ebug Flash code on MCU to make a LED
interface’s ability Passed

to flash MCU blink

Table 10.3.1: JTAG tests
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10.3.2 EBI Bus

WHAT HOW STATUS
EBI bus Configure MCU and its GPIO pins and
configuration on write to memory mapped addresses for Passed
MCU EBI. Inspect signals with a logic analyzer.
EBI receiver Connect MCU and FPGA with EBI, and

dul v FPGA use MCU to write to and read from Passed
fhoduie on FPGA block RAM.

Table 10.3.2: EBI bus tests
10.3.3 HDMI OutpUT
WHAT HOW STATUS
Writing to screen Connect the wires of a DVI cable to
from FPGA using GPIO pins on FPGA. Write color values Passed
HDMI using HDMI standard.
Table 10.3.3: HDMI tests
10.3.4 SRAM COMMUNICATION

WHAT HOW STATUS
Write to and read Connect the working EBI protocol of
from SRAM over MCU to an SRAM chip. Write words to Passed
EBI SRAM and read them back.
FPGA to SRAM Connect FPGA GPIO pins to SRAM. Use Unfi
communication FPGA to write words to SRAM and read : }rll él_
over EBI them back She

Table 10.3.4: SRAM tests

10.4 PCB TESTS

After receiving the finished PCB and the components, a series of tests were
performed to make sure all parts of assembling the finished computer were done

correctly.
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The purpose of these

CHAPTER 10. TESTING

SOLDER, SIGNAL AND POWER TEST

tests was to solder components and check that their con-

nections held, as well as check that power correctly propagated through the

board.

WHAT

HOW STATUS

5 V power from
USB connector

Solder components, measure voltage on
headers on 5 V power line, verify that it is | Passed
5V

3.3 V power from
regulator and VDD
headers

Solder components, measure voltage on

3.3 V power plane, verify that it is 3.3 V| T 25

1.2 V power from
regulator and
power indicator
LED

Solder components, measure voltage from
1.2 V regulator and power indicator LED, | Passed
verify that it is 1.2 V

MCU and FPGA
soldering

Place MCU and FPGA on PCB and bake
them in oven, make sure baking looks Passed
good and balls have melted into sockets

MCU and FPGA
connected correctly

Solder helping headers, connect FPGA
and MCU to power, verify correct Passed
soldering by flashing MCU and FGPA

Table 10.4.1: Solder plan and verification

10.4.

2 OSCILLATOR AND CLOCK TEST

These tests consisted of using an oscilloscope in order to probe the outputs of
the FPGA’s oscillator and the high frequency and low frequency crystals of the

MCU.
WHAT HOW STATUS
FPGA oscillator Use oscilloscope on out pin on the
wave frequency at FPGA oscillator Passed
120 MHz
MCU low . Incompre-

Use oscilloscope to measure low .

frequency crystal frequency crvstal hensible
clock at 32.768 kHz 4 ¥ oLy results
MCU high Use oscilloscope to measure high Incorpp e
frequency crystal frequency crvstal hensible
clock at 48 MHz 4 ¥ oLy results

Table 10.4.2: Frequency output tests
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Figure 11.0.1: The working Demolicious devkit setup

In this section, the fruit of our labor, namely the Demolicious system is pre-
sented. The system has been sucessfully run on a concoction of FPGA and
MCU devkits, using the HDMI port of the PCB for video output. This setup is
showcased in figure 11.0.1.

A PCB version is almost fully operational. A version with both FPGA and MCU
flashed with their respective images managed to output animations, with some
undiagnosed showstopping software glitches. The venture had to be paused due
to a lack of time towards the end of the project.

Kernel images presented in this section are taken from the same setup presented
in figure 11.0.1.
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11.1 SCALABILITY OF THE DEMOLICIOUS SYSTEM

The architecture of the Demolicious system easily scales to a larger number of
processors. As there is a linear relationship between the number of processor
cores on chip and processor throughput, one can simply add more cores to
increase performance.

Limiting factors to this scalability include:

1. The more cores, the lower the clock frequency, as signal propagation time
and fanout increases

2. Space available on the chosen FPGA

3. Power consumption constraints, as more cores increase active power con-
sumption

Cores Crit. path  Max freq.  Dynamic+quiescent power LX16 LX45

2 17.103ns  58.469MHz 0.272W: 0.088 + 0.184 v v
4 17.959ns  55.682MHz 0.292W: 0.107 + 0.184 v
8 19.722ns  50.108MHz 0.353 W: 0.168 + 0.186 X
16 X X X X

SIRNEEN

Table 11.1.1: Hardware configurations compared. Harvested from post place &
route static simulation.

The 4-core design fits with room to spare on the LX16, but the 8-core design
does not fit. The LX45 shifts this up one notch, fitting the 8-core design, but
being unable to place & route the 16-core design. For all processor designs,
the critical path passes from the immediate field of the instruction through the
ALU into the active register file. This is something that could be decreased
drastically by pipelining the processor.

Figure 11.1.1 shows that there is a negligible drop in maximum frequency from
two to eight cores. At 50.108MHz with 8 cores, the GPU has an instruction
throughput of 400 MIPS. This compares favorably to the 117 MIPS of the
two-core architecture.

It does however come with a 100mAh increase in power draw. Luckily this only
constitutes a 30% total increase in power, considerably less than the fourfold
improvement in GPU throughput.

11.2 PERFORMANCE

In the Demolicious system, kernel calls can be issued by the CPU, taking only
a few cycles. This means that the number of frames per second (FPS) that the
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system can display is dominated by the run time of the kernels.

(a) Output from the green screen ker- (b) Output from the tunnel kernel.
nel.

Figure 11.2.1: Running two example kernels.

Figure 11.2.1 shows the output from the green screen kernel, and a more complex
tunnel effect kernel (listing C). It’s desirable that both these kernels can be run
at about 30 FPS. Using the results presented in section 11.1, the expected frames
per second for varying resolutions can be estimated.
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Figure 11.2.2: Running the green screen kernel.
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Figure 11.2.3: Running the tunnel kernel.

The figures 11.2.3, and 11.2.2 display the relationship between frame rate, res-
olution and number of cores. Both figures display that doubling the amount of
core roughly doubles the frame rate.

For a configuration of cores, the time it takes to process one pixel is constant.
This means that the time to execute one kernel scales linearly with the resolu-
tion. When the output resolution is increased, the amount of pixels to process
increases quadratically. As a consequence the frame rate decreases quadratically
when the resolution grows.

For the target resolution for the project, which is 512 x 256, the project goal of
maintaining 30 fps is achieved.

11.3 VIDEO OUTPUT

The Demolicious system can output to a screen using HDMI. The minimum
resolution permitted by the HDMI protocol is 640 x 480, but the size of the
data memory limits the actual resolution to 512 x 256 pixels. The rest of the
screen is padded with a checker pattern. Most of the time the output image is
correct. However, the output image is distorted under certain conditions.
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Figure 11.3.1: Flickering when running the tunnel kernel. This picture was
exposed over two frames.

Some kernels exhibit intermittent flickering (Figure 11.3.1). The exact reason
for why this occurs is unclear, but it can be observed that the flicker contains
parts of the last frame. This may be caused by a failure in the synchronization
mechanism in the video unit.

Since the GPU has priority on memory access, the video unit may get starved
for data. When the video unit is starved the buffer containing pixels to output
will underflow. For the duration of the starve, a line containing the previous
pixel on the bus will be displayed on the screen.

11.4 SINGLE VS DOUBLE BUFFERING

Screen tearing is a visual artifact where parts of two consecutive frames are
displayed at the same time. This occurs because the video unit reads the frame
buffer before the GPU has finished rendering it. In figure 11.4.1 the artifact can
be observed, occurrences are marked with red circles.
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Figure 11.4.1: Single buffering.

Double buffering is a technique to remove this artifact. As the name implies two
independent frame buffers are used. While one frame buffer is being read and
displayed on screen, the next frame is rendered to an off-screen frame buffer.
Once the frame has finished rendering the frame buffers are swapped, and the
frame is displayed by the video unit. In figure 11.4.2 it can be observed that
double buffering improves the quality of the image substantially. The image in
the figure does have some artifacts, but the ones caused by single buffering are
no longer present.
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Figure 11.4.2: Double buffering.

11.5 DEMOLICIOUS POWER EFFICIENCY

A Demolicious setup of 8 cores 11.1.1 has a power draw of 0.353 W. By quickly
and efficiently executing the kernel at hand, the GPU can reduce its total static
power consumption. Reducing the dynamic consumption however, is more dif-
ficult. The current GPU architecture will execute nops when no kernels are
active, keping dynamic power consumption sligthly lower than average, as no
memory requests need to be served. Therefore, Demolicious has been designed
with the goal 4.2.1 of allowing the host system to sleep as much as possible.
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The Giant Gecko microcontroller used as the host device has four different
energy modes, each lower energy mode more efficient, but more constrained.
Deeper power levels may conserve more power, but require a longer time to
wake up. EMO is normal operation, while EM2 (Deep sleep mode) is the deepest
power level with acceptable wake-up times for our usecase (somewhere around
2 ms) [11].

There are two different sleep patterns used by the MCU based on the executing
program:

1. A visual animation or similar, rendering at a known target FPS. The MCU
can stay at energy mode EM2 when kernels are executing, waking at fixed
intervals to update and relaunch kernels.

2. Programs working on some large dataset, where it is beneficial to tightly
pack kernel execution, reducing GPU idling. The host device can therefore
enter EM2 after launching a kernel, using the kernel complete pin to trigger
an interrupt, waking the host device from sleep.

The design is sound, and has been implemented successfully before by the au-
thors, but there was not enough time to fully implement it for this project in
the host code. ehe following numbers are therefore harvested from Silicon labs
Simplicity studio energy Aware Battery estimator.

Demolicous with 8 execution cores can run the tunnel kernel at 50 FPS @
512x256, spending 12.5 ms per frame 11.2.3. The tunnel kernel is to be executed
30 times per second, with the MCU waking via a timer interrupt to spawn the
new kernels. Kernel launch overhead is roughly 10pn + 2ms = 2ms. When
waking 30 times per second, this results in 60 ms awake per second. EMO
with EBI consumes 142.6 mA, EM2 190pa. This then averages to roughly
142.6mA % 0.060 + 0.19m A * 0.940 = 8.734 mA average consumption.

For the large dataset kernel, assume it takes 100ms to complete execution. The
MCU will have to wake 10 times per second, using 2 ms to wake and a negligible
overhead to deploy new kernels. This results in 10 *2ms = 20ms spent in EMO,
and 980 ms spent in EM2. This averages to 142.6mA 0.0204+0.19m A x0.980 =
3.038mA average consumption.

Without any use of sleep mode for the MCU, the 142.6 mA drawn make for
a total power consumption of 142.6mA % 3.3V = 470.6mW. However, for the
tunnel kernel example, making use of sleep mode puts the power consumption
at 8.734mA 3.3V = 28.8mW . For the large dataset kernel, power consumption
is at 3.038mA x 3.3V = 10.0mW.

These results show that there is a clear gain to be had from introducing low
power modes.

POWER BUDGET

The computer is powered by a EH-70p USB charger for the Nikon Coolpix
S2700 camera [12, p. 196]. This charger outputs a 5 V voltage and delivers
550 mA. This gives the power input an upper bound of power consumption at
550mA x5V = 2.75W.
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Based on checking the memory datasheet [6], page 4, the average current drawn
from the SRAM is 100mA. At two components, the memory energy consumption
becomes 2 x 100mA x 3.3V = 660mW, which makes them the most energy
demanding part of the computer.

With these major components and their estimated power consumption, one can
see that the final system draws approximately 660mW + 353mW + 28mW =
1041mW . The total power consumed is likely a little higher on account of signal
propagation, but it is still significantly less than the 2.75W we accounted for in
the power design.
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DISCUSSION

Hindsight is 20/20. Looking back at the development of Demolicious, some
design decisions have stood the test of time better than others. A project of
this size with such a short timeframe requires quick decision making, sometimes
sacrificing the optimal solution for a working solution. For example, an extreme
focus on redundancy in the design of the PCB has resulted in almost all compo-
nents being usable, sacrificing some power efficiency in the process. This section
will present controversial design decisions, better solutions where available, and
workarounds.

12.1  ENERGY EFFICIENCY

12.1.1 OpPTIMIZING FPGA POWER USAGE

While it was relatively easy to save power on the CPU side of things, the FPGA
posed a bigger challenge. The CPU easily enters deeper sleep modes, but no
such thing exists by default for the Spartan-6 FPGA. One way to reduce FPGA
power consumption is to clock gate components, in effect turning them off when
unneeded. It turns out that Xilinx®) supports dynamic clock gating for the
Spartan-6 series used in this project [16]. This feature can reduce power con-
sumption up to 30% for components opting to use chip enable signals.

The presented architecture has some usage of chip select signals, but does not
shut down execution cores, instruction fetch or the LSU unit when idling. The
addition of such a system-wide chip enable signal would reduce power usage
during GPU idle time, a feature that the next iteration of Demolicious should
include. This was not implemented for this project however, mainly due to time
constraints.

Now for a quick calculation to see how much power can be saved in an absolute
best-case scenario. Demolicious with 8 execution cores can run the tunnel ker-
nel at 50 FPS @ 512x256 (as seen in figure 11.2.3), spending 12.5 ms per frame.
When targeting 30 FPS, the GPU would spend 375 ms calculating frames, al-
lowing the GPU to be in a low power state for almost 62.5% of the time. Using
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a theoretical maximum of 30% dynamic power savings for the low power state,
the dynamic power consumption of 0.168 W from figure 11.1.1, can be reduced
t0 0.70%0.625 % 0.168W + 0.375 % 0.168W = 0.1365W . This represents a savings
in dynamic power consumption of 18.7%. The total FPGA power draw would
be reduced to 0.1365W + 0.1860W = 0.3225W, a 8.6% reduction over the origi-
nal 0.3530 W. This shows that FPGA power consumption still is dominated by
the quiescent draw.

12.1.2 PHYSICAL IMPLEMENTATION

To make a PCB as energy efficient as possible, one relies upon good practices.
The wires have to be as short as possible and the board as small as possible.
This will optimize for lowest possible static power consumption. Short wires for
signal wires will make dynamic power consumption as low as possible.

The backup oriented design of the PCB doesn’t fit very well in with this. The
amount of headers make wires unnecessarily long, as well as making the board
itself quite large. Headers need to make a hole through the whole board, which
makes it impossible to put wires on that place. Since the PCB has six signal
layers, it means that each header removes the possibility of six wires going
through where the header is. This makes the static power consumption higher
than it could be.

By having the entire bus on headers, the wires between the CPU and the GPU is
longer than they could have been. This makes the dynamic power consumption
higher than if the wires are shorter. However all of this is a trade-off as there
was only one chance for the PCB to work.

12.2 PROGRAMMING CHALLENGES

There are several limitations and issues a programmer must have in mind when
developing programs for the Demolicious system. First of all, since no compiler
for high-level languages is available, kernel code must be written in assembly.
The limitations of the language and relatively low expressiveness it provides,
makes kernels verbose and require substantial mental overhead.

The implementation of conditional execution, through predicated instructions
only, can also be quite difficult to get accustomed to. Chaining multiple con-
ditions together to form a correct logical structure, can require sketching and
some upfront planning of the program flow even for simple kernels.

These are, however, problems which are quite easily fixed by allowing compila-
tion from a language with a higher abstraction level. A tougher limitation is,
although also one which can be handled by a compiler, the limitations on the
frequency of memory instructions. Depending on the number of GPU cores,
memory instructions can’t occur more than each X cycles. Dealing with this,
without the performance drop of executing nop instructions is important when
rendering live graphics.
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12.3 SRAM - ALTERNATIVE MEMORY LAYOUTS

The presented architecture uses interlaced SRAM banks, presenting one large
unified memory space. An alternative approach is to dedicate one SRAM bank
to the LSU, the other to the HDMI unit. This approach will work when using
double buffering, as the LSU and HDMI unit can swap banks on each framebuffer
flip. With dedicated banks there will be no need for arbitration, as there never
will be more than one unit accessing each at bank the time. This would result in
the HDMI unit never starving due to memory lockout from the LSU. The LSU
would also be simpler, needing only a single queue to service memory requests.

The major advantage of interlacing the address space of the two memory banks
is that memory throughput effectively doubles. Two requests can be processed
in parallel from the unit currently granted access by the SRAM arbiter. When
a warp of size n requests memory access, it will take n/2 cycles to dispatch all
requests, as each SRAM bank services half of the requests. Therefore, the barrel
height only has to be equal to half of the number of processor cores. With the
dedicated memory banks, however, only one memory request can be serviced
each cycle. This requires that the barrel height is increased to n.

As the register directories compose a significant part of the design footprint,
the barrel height reduction is significant. Signal fanout is also reduced from
and to the register banks, dampening the reduction in clock frequency when
scaling the number of computation cores. More hardware resources can now be
allocated to processor cores, power is saved due to less registers being used, and
the clock frequency can stay higher. Drawbacks include the occasional flicker
due to HDMI unit starvation.

12.4 MULTIPLE CLOCK DOMAINS IN HDMI UNIT

The HDMI unit needs to output words with a frequency of 25 MHz. If it were
to share clock with the rest of the system, the system clock would have to be
25 Mhz itself or a multiple thereof. To avoid imposing this limitation, the buffer
in the HDMI unit crosses clock domains. Since the buffer receives data at native
memory speed, it is filled faster than the HDMI unit can read from it. The data
read out at 25 MHz also need to be serialized to a frequency of 250 MHz before
being output from the FPGA. This is to the knowledge of the authors, the first
project in the Computer Project course with a design incorporating multiple
clocks.

12.5 TROUBLESHOOTING AND WORKAROUNDS

During testing, it became apparent that there were two major issues that needed
to be fixed with the PCB. Firstly, the pin on the FPGA used for the clock was
not one of the dedicated clock pins. Secondly, the clock component had not
been implemented according to spec.
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FPGA CLOCK PIN PROBLEM

An error with the pin connection between the FPGA and the clock was discov-
ered during testing. The FPGA demanded a special pin for the clock, but the
PCB routed the clock to a regular GPIO pin. After checking the PCB layout,
a pin on the EBI bus was shown to be able to work as clock for the FPGA.

Since the clock is connected by jumpers to the FPGA, the pin on the EBI bus
could be wired to the clock jumper on the FPGA, solving the problem.

WRONG IMPLEMENTATION OF THE CLOCK

Due to a poor schematic in the clock component datasheet, the clock was wired
incorrectly on the PCB, as illustrated in figure 12.5.1.

Oscillator Oscillator
Out Out
Header
= =
L —— [ —
LK 2

Header

Figure 12.5.1: On the left: How the clock from the FPGA should be connected.
On the right: how it was connected on the PCB.

Because of this, the clock did not work. This problem was solved by soldering
together the pads of the SMD (surface mounted device) capacitor to allow the
clock signal to flow freely to the header pin. A through-hole version of the
removed capacitor was placed on one of the soldering pads and the other end
grounded, see figure 12.5.2. This caused the circuit on the PCB to match up
with the correct circuit from the data sheet.
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ouT

Oscillator

GND

Soldered together

15 pF
Cap pad

Header

Figure 12.5.2: How the FPGA clock fix was implemented.

MisMATCH LDO

During the testing phase, the LDO for the 1.2V did not output the correct
voltage. The 1.2V LDO is the same model as the 3.3V LDO, but has a different
footprint, see figure 12.5.3.

It was assumed that both components had the same, which resulted in mismatch
between the footprint and the component. The solution was to place the LDO
diagonally, and manually solder a wire to the correct solderpad on the PCB.
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3.3V LDO footprint 1.2 V LDO footprint

gnd gnd in

heat dispenser heat dispenser

out

Figure 12.5.3: On the left: 3.3 V LDO footprint. On the right: 1.2 V LDO
footprint.

12.6 HARDWARE COMPONENTS

In this section we will discuss some of the physical design, alternative solutions
and the practical solutions that arose during physical implementation.

USB DATA INPUT

In the initial design, a USB connector was introduced to receive data from a
host PC. However, during the implementation phase it was discovered to be
unnecessary. We discovered that the software applications we wanted to run on
the computer, could be included when programming the microcontroller with
the JTAG. This worked sufficiently for our needs. Since at the time we still had
much else to do, implementing input by USB became a very low priority and in
the end never happened. This also applied to the serial backup as well.

VGA-PORT

The PCB was designed with two VGA headers, one for the FPGA and one for
the MCU. An alternative solution is having one VGA port with exposed headers.
With exposed headers from the MCU and the FPGA as well, one could change
which one the VGA port is connected to by jumpers like 12.6.1.

By removing one of the VGA ports, the size of the PCB could have been reduced,
or used for other components.
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VGA-port GPU

Header

VGA-port Header

VGA-port CPU

Header

CPU

Figure 12.6.1: On the left: The current setup on our PCB. On the right: The
alternative solution.

12.6.1 CLOCKS
OSCILLATOR
As seen on figure 12.6.2, the measured period of the oscillator, with a ruler,
is around 8.5ns, which translates to around 118 MHz. The tolerance of the
oscillator is up to 100 ppm, see datasheet [3]. Since using a ruler as a mesure

tool will give unreliable results, one can assume the oscillator gives the correct
output.
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[ Autoscale | Displayed

Figure 12.6.2: The oscillator on an oscilloscope.

MCU CRYSTALS

As can be seen from the frequency tests 10.4.2, the crystal output frequency tests
did not pass their requirements. They were probed for output, but this resulted
in no discernable signal on the oscilloscope. However, as the implementation
continued, we found that the MCU worked as we desired. This led us to conclude
that we had likely misunderstood how to measure the frequencies of the crystals.

12.7 BUDGET

The group was given a budget of 10 000 NOK for production of the PCB and
component purchases. Ten boards were manufactured at the price of 10 103
NOK and components were ordered at the price of 7 571 NOK. (see appendices
A.1.1 and A.2.1). This made for a total cost of 17 674 NOK, which results in a
cost overrun of 76 %. There were mainly two reasons for this.

Firstly, the PCB design took so long that a fast production time was required.
This, along with a very large board, drove the cost up greatly. Secondly, com-
ponents for at least 5 PCBs were bought. If fewer components were bought, the
price would be lower. However, this all is a part of the backup oriented design.

For this reason there are two main ways to spend less money. The total price
could be driven down by having a less backup oriented design with fewer com-
ponents. This would significantly lower the total cost. Also, if the time limit
weren’t that strict, and the board could use longer time in production, the price
would be lower.
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CONCLUSION

We designed and implemented a graphics processing unit inspired system, ca-
pable of executing a large amount of threads fast enough to display graphics to
a display over HDMI.

The final system meets all the requirements set in the beginning of the project.
The goal of at least 30 FPS has been reached for several kernels, at the target
screen resolution of 512x256 pixels when running with 8 processor cores. CPU
power savings were simulated successfully, showing great promise.

A fully functional PCB was created with each individual component working.
The implementation of the Demolicious system on the PCB was almost finalized,
with only minor issues remaining.

There is still room for further improvement of the computer, which will be
detailed in the next section.

This project has been extremely challenging and demanding. Because of this,
the group as a whole have gained great insights into the inner workings of
computers and GPUs.

13.1 FURTHER WORK

A beautiful thing with projects like this, is that they can be done significantly
better when done the second time. This section will focus on possible further
improvements of the system.

13.1.1 ARCHITECTURE

As one of the consequences of the barrel processor, the processor lends itself
very well to pipelining. The consecutive instructions in the pipeline will always
be from different threads. As long as there are fewer pipeline stages than the
height of the barrel, an instruction will complete its path through the pipeline
before the next one from the same thread starts. This means that there are no
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data hazards in the pipeline. Thus it is as simple as dividing the processor into
stages and adding registers. Currently the critical path in Demolicious is going
through the processor cores. Adding a pipeline to the processor would therefore
increase the maximum frequency the processor can run at. As the SRAMs on
the Demolicious can handle 100 MHz, there is room for improvement in the
system clock frequency. This directly translates to higher throughput.

13.1.2 PHYSICAL DESIGN

The physical design of Demolicious worked as intended. A second version will
allow for a greater energy efficiency and a smaller size. All headers and unnec-
essary backup solutions can be removed, letting a new design focus on a small
PCB with short wires and small power planes. If a more powerful computer is
to be made, a more powerful FPGA can be introduced along with a matching
number of SRAMs, as a more powerful FPGA will have a greater memory need.

Furthermore, power and data can be unified in a single USB connection. The
power USB and the FPGA are currently positioned far from one another, but
in a new design they can be moved closer so that the 1.2V wire that powers the
FPGA can be made as short as possible. Lastly, it would have been convenient
to have had flash memory for the FPGA as this would allow for retaining the
program after the power has been shut off. This would eliminate the need to
flash the FPGA after each power off.

13.1.3 COMPILER

A major hurdle to exploiting the full potential of the Demolicious system was
the difficulty and lack of user-friendliness when writing programs in Demolicious
assembly. To greatly simplify the programming, a C compiler with Demolicious
assembly as target could be implemented.
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APPENDIX A. EXPENSES

A.1 PCB MANUFACTURING

Att: Yaman Umuroglu

10 Board 1010.300 10103.00

All prices in NOK. 10103.00

DMProsj2014-v3
Silkscreen and annular ring fixes

187.4 147.4
8 layer: 8001 Standard 1,6mm No
1,6 mm 10z (38 ym) outer, 1 0z (35 um) inner
FR-4 - IPC-4101C /21
Lead-free HASL 2
Yes
No
White None No
Green Green Yes
No No No
No No No
Yes
0.100 0.100 :2
0.100 0.100 No
0.200 0.200 No
0.20
No
1034 4 None None

The customer is responsible for checking that this order confirmation is in accordance with the order. Any discrepencies must be reported without
delay. See http://www.elprint.no/terms.html for complete terms and conditions of sale.

29.10.2014
Anne-Lise Dahle
Elprint Norge AS

Figure A.1.1: PCB order
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APPENDIX A. EXPENSES

A.2 COMPONENT PURCHASES

# | Description Amount | Unit Price (NOK) | Total (NOK)
1 | HDMI Receptacle 5 8.20 41.00
2 | Memory 10 104.00 1040.00
3 | 1k Res 100 0.19 19.00
4 | Buttons 25 3.35 83.75
5 | LEDs 30 5.30 159.00
6 | Inductors 25 1.35 33.75
7 | SPD 5 16.45 82.25
8 | LED Resistor 20 1.05 21.00
9 | USB Receptacle 10 4.25 42.50

10 | 1.2V res 25 1.33 33.25

11 | Low Freq. Crystal 5 9.75 48.75

12 | 15 Ohm res 10 1.05 10.50

13 | 1.2V regulator 5 4.50 22.50

14 | 3.3V regulator 5 22.70 113.50

15 | 4.7 kOhm res 10 1.05 10.50

16 | ESD protection 5 1.20 6.00

17 | Headers 20 9.95 199.00

18 | Jumpers 200 1.05 210.00

19 | 470nF caps 60 3.00 180.00

20 | 100uF caps 35 5.39 188.65

21 | 4.7uF caps 40 1.65 66.00

22 | 100nF caps 100 0.75 75.00

23 | 10uF caps 10 3.58 35.80

24 | 1uF caps 10 2.55 25.50

25 | 12pF caps 10 1.12 11.20

26 | 22pF caps 10 1.65 16.50

27 | 15pF caps 10 1.25 12.50

28 | 10nF caps 10 3.60 36.00

29 | FPGA 10 402.32 4023.20

30 | MCU 10 51.35 513.50

31 | 48 MHz Crystal 5 14.27 71.30

32 | 120 MHz Oscillator 5 17.10 85.50

33 | Noise Suppressor 5 10.84 54.18

‘ ‘ ‘ Total cost (NOK) 7571.08

Table A.2.1: Component order
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APPENDIX B

INSTRUCTION SET
ARCHITECTURE

This appendix will provide an overview of the instruction set supported by the
GPU.
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APPENDIX B. INSTRUCTION SET ARCHITECTURE

B.1 REGISTERS

The following registers are available:

Number | Name Description R/W Size

$0 Z€ro Always contains the value | Read-only 16
Zero

$1, $2 id_hi, id_lo The current thread’s ID Read-only 16

$3, $4 addresshi, address_lo | Address used by load & | Read/Write | 16
store instructions

$5 data Data loaded/stored by | Read/Write | 16
load & store instructions

$6 mask Conditional instruc- | Read/Write | 1
tions will be masked
(section B.2) when this
register is set to 1.

$7-$15 General-purpose Read/Write | 16

Special registers may be referenced by their name in assembly code.

Table B.1.1: Register overview
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APPENDIX B. INSTRUCTION SET ARCHITECTURE

B.2 PREDICATED INSTRUCTIONS

The only supported way of conditional execution is through predicated instruc-
tions (masking). All instructions except for sw have a predicated version which
will only execute when masking is disabled.

In assembly, an instruction prepended with a question mark will be executed
conditionally. The first bit of the instruction will be set to one for the conditional
versions. These predicated instructions will still be executed, but they will never
store their result in the destination register.

Masking is controlled by the dedicated masking register. Instructions can write
to this register to turn masking on and off. The register is only one bit, and
will therefore only keep the least significant bit of data written to it.
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APPENDIX B. INSTRUCTION SET ARCHITECTURE

B.3 INSTRUCTIONS

B.3.1 R-TYPE INSTRUCTIONS

All R-type instructions have opcode 00000. Their syntax, meaning and under-
lying ALU function are described in table B.3.1.

Instruction Example Meaning ALU Function
Add add $1, $2, $3  $1 = $2 + $3 0x4
Subtract sub $1, $2, $3  $1 = $2 - $3 0x5
Multiply mul $1, $2, $3  $1 = $2  $3 0x9
And and $1, $2, $3  $1 = $2 & $3 0x6
Or or $1, $2, $3 $1=9%21 $3 0x7
Xor xor $1, $2, $3  $1 = $2 ~ $3 0x8
Set on less than slt $1, 82,83 $1=($2<$3)?71:0  0x3
Set on equal seq 81, 82,83 $1=(%2==9%3)7 1: 0xA
Shift Left Logical sll $1, $2, 10  $1 = $2 << 10 0x0
Shift Right Logical srl $1, $2, 10 $1 =$2>>> 10 0x1
Shift Right Arithmetic sra $1, $2, 10 $1 = $2 >> 10 0x2

Table B.3.1: R-type instructions

1 ) 5 o5 5 5 1 5

function

mask | opcode | rs | rt | rd | sh | X

Table B.3.2: Instruction format for R-type instructions.
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APPENDIX B. INSTRUCTION SET ARCHITECTURE

B.3.2 I-TYPE INSTRUCTIONS

Instruction Example Meaning Opcode
Load constant  1dc $7, 1 $7 = constant _memory[l]  0x2
Add immediate addi $7, $7, 2 $7 =97+ 2 0x1
Load lw $data = memory[$address|] 0x8
Store sw memory|$address| = $data 0x4

Thread finished thread finished Stops executing the kernel — 0x10
Nop nop Do nothing 0x0

Table B.3.3: I-type instructions.

1 5 5 5 16

mask | opcode | rs | rd | immediate

Table B.3.4: Instruction format for I-type instructions.

B.3.3 PSEUDO INSTRUCTIONS
Some additional instructions are supported by the assembler in order to make
programming for the GPU easier. An overview of these instructions is provided

in table B.3.5.

Instruction Example Translated instruction

Move mv $1, $2  add $1, $0, $2
Load immediate 1di $1, 1 addi $1, $0, 1

Table B.3.5: Pseudo instructions
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35

APPENDIX C. COMMENTED TUNNEL KERNEL

APPENDIX C

COMMENTED TUNNEL KERNEL

The idea is to draw a green tunnel.

This effect consists of 2 squares in different sizes and a X across
the screen

To make this happen assume we are on a pixel that should be drawn
green

We then make a series of checks to verify if we are on the correct
pixel or not

If we ever see that we are on the wrong pixel, we will set our mask
bit high

This will make it so that we draw black instead of green

To make this happen we have to use a general purpose register as
masking register

This is because if the masking value gets set high, we don’t want to
overwrite

it with low, so we need to remember it.

First square

7

1di $15, Obl11111 ; 63 bitmask

1di $14, 64 ; Set width & height of screen into $14
and $7, $15, $id_lo ; Load x value into S$7

srl $8, $id_lo, 6 ; Load y value into $8

1di S$data, 0b0000011111100000 ; Set default color to green

mv $12, SO ; shadow mask - used as temporary mask bit to

; be able to read masking value

1ldec $13, 10 ; Set offset from edges
sub $14, $14, $13 ; Set offset from opposite edges

7

Draw LEFT line of box

seq $10, $7, $13 ; Checks that we are on correct x value
slt $11, $13, s$8 ; Checks that we are inside our box from the
top

and $10, $10, $11

slt $11, $8, $14 ; Checks that we are inside our box from the

bottom

and $10, $10, $11

or $12, $12, s10 ; Adds result into masking bit
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36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

; Draw RIGHT line

seq $10,

slt s11,
and $10,

slt s11,
and $10,

$7, $14

$13, $8
$10, $11

$8, $14
$10, $11

or $12, $12, $10

; Draw UPPER line

seq $10,

$8, $13

of

of

horizontal lines

slt $11,
and $10,

slt s$11,
and $10,

$13, $7
$10, $11

$7, $14
$10, $11

or $12, $12, $10

; Draw LOWER line

seq $10, $8, $14
upper

slt $11, $13, $7

and $10, $10, $11

slt $11, $7, $14

and $10, $10, $11

or $12, $12, s$10

; Next square

addi $14,
1ldc $13,
sub $14,

$0, 64
11
$14, $13

of

APPENDIX C. COMMENTED TUNNEL KERNEL

box
; Same system as above, but checking the other
;side of the box

box
; Instead of checking the vertical lines, the

; are checked

box
; Same as above, but lower line instead of

; Load screen width & height into $14
; Set new offset from edges
; Set offset from opposite edges

; Draw LEFT line of box

seq $10,

slt $11,
and $10,

slt s11,
and $10,

$7, $13

$13, $8
$10, $11

$8, $14
$10, $11

or $12, $12, $10

; Same check for the square as previous square

; Draw RIGHT line of box

seq $10,

slt $11,
and $10,

slt $11,
and $10,

$7, $14

$13, $8
$10, $11

$8, $14
$10, $11

or $12, $12, $10
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98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136

137
138
139
140

APPENDIX C. COMMENTED TUNNEL KERNEL

; Draw UPPER line of box
seq $10, $8, $13

slt $11, $13, $7
and $10, $10, $11

slt $11, $7, $14
and 510, $10, $11

or $12, $12, $10

; Draw LOWER line of box
seq $10, $8, $14

slt S$11, $13, s$7
and $10, $10, $S11

slt s$11, $7, $14
and $10, $10, $11

or $12, $12, $10

; Half cross

seq $10, $7, $8 ; 1f x = y then we are on \
or $12, $12, s$10

; Other half cross

addi $13, $0, Obl11111 ; 63 bitmask

sub $14, $13, S8 ; negative y valye, check /
seq $10, $14, s$7

or $12, $12, $10

mv $mask, $12 ; Store temporary mask value into actual mask
register

? 1di $data, 0x0000 ; Write black if not on either squares or on the

cross
1ldc $10, 5
add $address_lo, $10, $id_1lo
sSwW ; save values
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